Properties

Label 4.4.725.1-1936.4-e1
Base field 4.4.725.1
Conductor norm \( 1936 \)
CM no
Base change no
Q-curve no
Torsion order \( 1 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Base field 4.4.725.1

Generator \(a\), with minimal polynomial \( x^{4} - x^{3} - 3 x^{2} + x + 1 \); class number \(1\).

Copy content comment:Define the base number field
 
Copy content sage:R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, 1, -3, -1, 1]))
 
Copy content gp:K = nfinit(Polrev([1, 1, -3, -1, 1]));
 
Copy content magma:R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 1, -3, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{3}-a^{2}-a+1\right){x}{y}+\left(a^{3}-a^{2}-2a+2\right){y}={x}^{3}+\left(-a^{3}+a^{2}+a-1\right){x}^{2}+\left(-1200a^{3}+1850a^{2}+3099a-4753\right){x}+42227a^{3}-70688a^{2}-108992a+134936\)
Copy content comment:Define the curve
 
Copy content sage:E = EllipticCurve([K([1,-1,-1,1]),K([-1,1,1,-1]),K([2,-2,-1,1]),K([-4753,3099,1850,-1200]),K([134936,-108992,-70688,42227])])
 
Copy content gp:E = ellinit([Polrev([1,-1,-1,1]),Polrev([-1,1,1,-1]),Polrev([2,-2,-1,1]),Polrev([-4753,3099,1850,-1200]),Polrev([134936,-108992,-70688,42227])], K);
 
Copy content magma:E := EllipticCurve([K![1,-1,-1,1],K![-1,1,1,-1],K![2,-2,-1,1],K![-4753,3099,1850,-1200],K![134936,-108992,-70688,42227]]);
 

This is a global minimal model.

Copy content comment:Test whether it is a global minimal model
 
Copy content sage:E.is_global_minimal_model()
 

Mordell-Weil group structure

trivial

Invariants

Conductor: $\frak{N}$ = \((-2a^3+2a^2+10a-4)\) = \((-a^3+2a^2+a-3)^{2}\cdot(2)\)
Copy content comment:Compute the conductor
 
Copy content sage:E.conductor()
 
Copy content gp:ellglobalred(E)[1]
 
Copy content magma:Conductor(E);
 
Conductor norm: $N(\frak{N})$ = \( 1936 \) = \(11^{2}\cdot16\)
Copy content comment:Compute the norm of the conductor
 
Copy content sage:E.conductor().norm()
 
Copy content gp:idealnorm(K, ellglobalred(E)[1])
 
Copy content magma:Norm(Conductor(E));
 
Discriminant: $\Delta$ = $-2752512a^3+1048576a^2+8257536a-2490368$
Discriminant ideal: $\frak{D}_{\mathrm{min}} = (\Delta)$ = \((-2752512a^3+1048576a^2+8257536a-2490368)\) = \((-a^3+2a^2+a-3)^{6}\cdot(2)^{17}\)
Copy content comment:Compute the discriminant
 
Copy content sage:E.discriminant()
 
Copy content gp:E.disc
 
Copy content magma:Discriminant(E);
 
Discriminant norm: $N(\frak{D}_{\mathrm{min}}) = N(\Delta)$ = \( 522872518047439471526281216 \) = \(11^{6}\cdot16^{17}\)
Copy content comment:Compute the norm of the discriminant
 
Copy content sage:E.discriminant().norm()
 
Copy content gp:norm(E.disc)
 
Copy content magma:Norm(Discriminant(E));
 
j-invariant: $j$ = \( -\frac{1823165439649343}{131072} a^{3} + \frac{1823165439649343}{131072} a^{2} + \frac{1823165439649343}{65536} a - \frac{2950374307928381}{131072} \)
Copy content comment:Compute the j-invariant
 
Copy content sage:E.j_invariant()
 
Copy content gp:E.j
 
Copy content magma:jInvariant(E);
 
Endomorphism ring: $\mathrm{End}(E)$ = \(\Z\)   
Geometric endomorphism ring: $\mathrm{End}(E_{\overline{\Q}})$ = \(\Z\)    (no potential complex multiplication)
Copy content comment:Test for Complex Multiplication
 
Copy content sage:E.has_cm(), E.cm_discriminant()
 
Copy content magma:HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{ST}(E)$ = $\mathrm{SU}(2)$

BSD invariants

Analytic rank: $r_{\mathrm{an}}$= \( 0 \)
Copy content comment:Compute the Mordell-Weil rank
 
Copy content sage:E.rank()
 
Copy content magma:Rank(E);
 
Mordell-Weil rank: $r$ = \(0\)
Regulator: $\mathrm{Reg}(E/K)$ = \( 1 \)
Néron-Tate Regulator: $\mathrm{Reg}_{\mathrm{NT}}(E/K)$ = \( 1 \)
Global period: $\Omega(E/K)$ \( 2.3736026057591006911701624076027723147 \)
Tamagawa product: $\prod_{\frak{p}}c_{\frak{p}}$= \( 17 \)  =  \(1\cdot17\)
Torsion order: $\#E(K)_{\mathrm{tor}}$= \(1\)
Special value: $L^{(r)}(E/K,1)/r!$ \( 1.49860759115285 \)
Analytic order of Ш: Ш${}_{\mathrm{an}}$= \( 1 \) (rounded)

BSD formula

$$\begin{aligned}1.498607591 \approx L(E/K,1) & \overset{?}{=} \frac{ \# ะจ(E/K) \cdot \Omega(E/K) \cdot \mathrm{Reg}_{\mathrm{NT}}(E/K) \cdot \prod_{\mathfrak{p}} c_{\mathfrak{p}} } { \#E(K)_{\mathrm{tor}}^2 \cdot \left|d_K\right|^{1/2} } \\ & \approx \frac{ 1 \cdot 2.373603 \cdot 1 \cdot 17 } { {1^2 \cdot 26.925824} } \\ & \approx 1.498607591 \end{aligned}$$

Local data at primes of bad reduction

Copy content comment:Compute the local reduction data at primes of bad reduction
 
Copy content sage:E.local_data()
 
Copy content magma:LocalInformation(E);
 

This elliptic curve is not semistable. There are 2 primes $\frak{p}$ of bad reduction.

$\mathfrak{p}$ $N(\mathfrak{p})$ Tamagawa number Kodaira symbol Reduction type Root number \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{N}\)) \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{D}_{\mathrm{min}}\)) \(\mathrm{ord}_{\mathfrak{p}}(\mathrm{den}(j))\)
\((-a^3+2a^2+a-3)\) \(11\) \(1\) \(I_0^{*}\) Additive \(-1\) \(2\) \(6\) \(0\)
\((2)\) \(16\) \(17\) \(I_{17}\) Split multiplicative \(-1\) \(1\) \(17\) \(17\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(17\) 17B.16.3

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 17.
Its isogeny class 1936.4-e consists of curves linked by isogenies of degree 17.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.